Quantifying the Impact of Disfluency on Spoken **Content Summarization** Maria Teleki, Xiangjue Dong, James Caverlee **Texas A&M University**

Research Questions

• RQ1: How Do Disfluencies Impact **Summarization**

Original

Hello and welcome to our podcast! Let's get right to it. Today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

Repeats with N=3

Hello and welcome to our podcast! Let's get get get right to it. Today we're going to be interviewing a a a very special guest, someone I know you guys have been excited about having on the show.

RQ1: Synthetic Disfluency Injection (N)

- We use 1,020 podcasts from the **Spotify Podcasts Dataset** [1] for our experiments for consistency with the 2020 TREC Podcasts Track summarization task [2].
- For repeats and interjections, we sample from X-N (μ =10, σ =1) to determine the position at which the term(s) should be injected into the transcript N times; interjections are uniformly randomly selected from: uh, um, well, like, so, okay, I mean, you know. • For false starts, sentences >4 words are non-uniformly sampled with 80/20 probability with replacement, and the selected sentences have a false start (first 2 words of sentence) injected N times.

Quality? We synthetically inject disfluency events (repeats, interjections, false starts, and their combinations) at a range of severity levels and measure their impact on summarization quality.

 RQ2: Can Summarization Quality be Improved By Directly Modeling Disfluency? We explore the use of a state-of-the-art disfluency detection model [2] to improve the summarization quality by either (1) removing the disflencies, or (2) tagging the disfluencies.

Interjections with N=3

Hello and welcome to our podcast! Let's get right uh okay okay to it. Today we're going to be interviewing a very special um so I mean guest, someone I know you guys have been excited about having on the show.

False Starts with N=3

Hello and welcome to our podcast! Let's get right to it. Today we're today we're today we're today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

• We vary N from 1 to 10 to isolate the impact of increased **disfluency** and stress test the summarization systems.

RQ1: Stress Testing Summarization Models (N=0 to N=10) • We consider 6 models: cued_speechUniv2 BART 1min baseline, 0.140 0.166 cued speechUniv2, 0.135 BART, T5, Pegasus, 0.164 Llama 2-Chat. 0.130 0.162 • Overall drop in

References

[1] Clifton, Ann and Reddy, Sravana and Yu, Yongze and Pappu, Aasish and others. 2020. 100,000 podcasts: A spoken English document corpus. [2] Rosie Jones, Ben Carterette, Ann Clifton, Maria Eskevich, and others. 2020. TREC 2020 Podcasts Track Overview. In Text Retrieval Conference. [3] Paria Jamshid Lou and Mark Johnson, 2020. Improving disfluency detection by self-training a self-attentive model. In Association for

Computational Linguistics,

pages 3754–3763.

ROUGE-L with increased N. • T5 and Pegasus are the least resilient, BART is moderately resilient, and cued speechUniv2 and Llama 2-chat are the most resilient.

RQ2: Repairing & Tagging Transcripts for Fine-Tuning (N=2)

• Mouse a disfluency											
 We use a disfidency annotation model [3] to label disfluencies. We then examine the impact of: (i) repairing the transcripts via disfluency removal, and (ii) tagging the disfluencies in the transcripts (<dis>).</dis> 	train	test	BART			Т5			Pegasus		
			R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2
	$train_R$	$test_R$ test test_T	0.172 0.177 0.174	0.240 0.244 0.241	0.085 0.090 0.086	0.145 0.146 0.148	0.197 0.196 0.198	0.059 0.060 0.063	0.129 0.131 0.096	0.174 0.177 0.133	0.049 0.052 0.037
	train	$test_R$ test test_T	0.170 0.175 0.172	0.236 0.242 0.238	0.083 0.088 0.085	0.146 0.149 0.147	0.198 0.200 0.194	0.060 0.062 0.065	0.122 0.126 0.090	0.165 0.169 0.124	0.045 0.049 0.032
	$train_T$	$test_R$ test test_T	0.172 0.173 0.169	0.238 0.240 0.235	0.083 0.085 0.081	0.142 0.143 0.145	0.193 0.194 0.196	0.057 0.057 0.058	0.129 0.127 0.115	0.193 0.193 0.146	0.048 0.047 0.038

We find that training on the repaired transcripts (train_R) and testing on the original transcripts (test) yields the best results.

